
Improv: Live Coding for Robot
Motion Design

Alexandra Q. Nilles
Department of Computer Science
University of Illinois at Urbana-Champaign
nilles2@illinois.edu

Chase Gladish
Department of Computer Science
University of Illinois at Urbana-Champaign
gladish2@illinois.edu

Mattox Beckman
Department of Computer Science
University of Illinois at Urbana-Champaign
mattox@illinois.edu

Amy LaViers
Mechanical Science and Engineering
Department
University of Illinois at Urbana-Champaign
alaviers@illinois.edu

ABSTRACT
Often, people such as educators, artists, and researchers wish to quickly generate robot motion.
However, current toolchains for programming robots can be difficult to learn, especially for people
without technical training. This paper presents the Improv system, a programming language for
high-level description of robot motion with immediate visualization of the resulting motion on a
physical or simulated robot. Improv includes a "live coding" wrapper for ROS (“Robot Operating
System", an open-source robot software framework which is widely used in academia and industry,
and integrated with many commercially available robots). Commands in Improv are compiled to ROS
messages. The language is inspired by choreographic techniques, and allows the user to compose and
transform movements in space and time. In this paper, we present our work on Improv so far, as well
as the design decisions made throughout its creation.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
MOCO, June 28–30, 2018, Genoa, Italy
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6504-8/18/06.
https://doi.org/10.1145/3212721.3212882

https://doi.org/10.1145/3212721.3212882


Improv : Live Coding for Robot Motion Design MOCO, June 28–30, 2018, Genoa, Italy

CCS CONCEPTS
• Computer systems organization→ External interfaces for robotics;

KEYWORDS
robotics, choreography, live coding, ROS, Haskell, roshask, human-robot interaction

ACM Reference Format:
Alexandra Q. Nilles, Chase Gladish, Mattox Beckman, and Amy LaViers. 2018. Improv : Live Coding for Robot
Motion Design. InMOCO: 5th International Conference on Movement and Computing, June 28–30, 2018, Genoa,
Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3212721.3212882

Figure 1: An illustration of how user input,
written to a text file, is converted into a
ROS node which publishes messages to a
simulator or physical robot.

INTRODUCTION
Robotic technology is becoming more commonly integrated into settings outside of the factory -
including classrooms [15] and art installations [23]. In many of these cases, users often do not have
extensive programming experience, and only require the robot to follow specific motion patterns and
perhaps have simple reactivity. The time is ripe for choreographic methods of programming robots,
which match our mental models of motion.

The following ROS Python client code will
cause a mobile robot such as a Roomba or
Turtlebot to follow a path that curves forward
and left:
if __name__ == ’__main__’:

pub = rospy.Publisher(
’turtle1/cmd_vel’,Twist)

rospy.init_node(’publisher_node’)
loop_rate = rospy.Rate(5)
while not rospy.is_shutdown():

vel=Twist()
vel.linear.x = 1.0
vel.angular.z = 1.0
pub.publish(vel)
loop_rate.sleep()

The equivalent code in Improv is

turtle1 $ forward || left

where | | is an operator which combines move-
ments in parallel.

Currently, many commercially available robots are programmed through interfaces (which may be
graphical, text-based, or physically interactive) created for each specific robot by the manufacturer or
through ROS (the "Robot Operating System") [21] [20]. We target an improved user experience for
ROS, because it is a free and open source toolset which is compatible with many platforms. Improv is
essentially a wrapper around ROS. This gives us the benefits of ROS’s infrastructure, but we exchange
the powerful low-level control available in most ROS client libraries for the simplicity of a high-level
representation of robot motion.
The ROS workflow has two obstacles for newcomers to robotics programming: 1) programs are

written at a low level of abstraction, requiring users to painstakingly translate their mental model of
the intended movement, and 2) the process of writing code, compiling and executing the instructions
on the robot platform can be intimidating. For example, a beginner tutorial for ROS will have the user
open at least three terminal windows, a text editor, and a robot simulator, for a total of five windows.
It is often not possible to see all the relevant windows at one time, making it difficult for the user to
have a coherent mental model of information flow in the system.

The tool introduced in this paper, Improv, addresses both of these sticking points. With Improv we
hope to help make robotics more accessible to a broader range of people. Possible users of this tool
include artists, educators, newcomers to robotics, and anyone who wishes to quickly prototype robot
motion patterns. Improv is open-source and available at https://github.com/alexandroid000/improv.
Please let us know if you try it out!

https://doi.org/10.1145/3212721.3212882
https://github.com/alexandroid000/improv


Improv : Live Coding for Robot Motion Design MOCO, June 28–30, 2018, Genoa, Italy

Live coding and algorave
This work is heavily influenced by live cod-
ing interfaces and programming languages for
generating music and visuals, which are of-
ten associated with the algorave performance
movement [5]. In particular, the programming
language TidalCycles [17] has had a strong
influence on the structure of the Improv pro-
gramming language, both syntactically and in
how relative timing of events is managed. Also
worth mentioning is Al Jazari, a live coding in-
stallation which uses a simple graphical lan-
guage to allow people to control robots (in sim-
ulation) [16]. The language includes condition-
als based on external state and communication
between the bots. The program state of the
robot is also visualized. There are a variety of
other projects centered around live coding in-
terfaces for controlling cyberphysical systems
and visual simulators [3].

One important design decision for developers
of interactive text-based programming tools is
whether to tie their tool to a specific text editor.
We decided to allow users flexibility to choose
their editor of preference. Instead of creating
an interface for each desired editor, we use a
shell script which monitors the file that the
user is editing for changes. Every time the user
saves changes to the file, the program detects
a change, interprets the user’s new program,
and restarts the ROS node. This design choice
circumvents the need to interface with specific
editors. While we have not done a formal tim-
ing analysis, the delay is a small fraction of
a second and not noticeably longer than the
time it takes to look from the text editor to the
simulator.

Related Work. Especially when used with the two-dimensional Turtlesim, Improv is reminiscent
of Logo [19], an educational language that is often used in conjunction with a simulation of a two-
dimensional turtle. Our programming language is less expressive and powerful than Logo, but is
integrated with ROS and thus able to be used with three-dimensional simulators and actual robots.
Scratch, an educational, visual programming language has been integrated with ROS [7], which is the
most closely related work to Improv. Our interface is textual, while Scratch is visual, and the Improv
programming language is more focused on modelling of choreographic concepts (such as relative
timings of movements and body symmetries) while Scratch is focused on game development.
Among many programming languages for robotics [18], we are aware of two other tools for live

programming in ROS, one which uses the Python shell [1], and one which uses the Live Robot
Programming language and the Pharo ROS client [4] [9]. However, these languages focus on low-level
sensor and actuator commands and logical control flow, rather than modeling movement. These tools
are better suited for applications which involve sensing the environment, while Improv is better suited
to applications where the user wishes to quickly generate certain movements and creatively explore
movement patterns. Improv is heavily influenced by Dance, a domain-specific language inspired by
Labanotation and built in Haskell [12]. Another relevant project is roshask [6], a Haskell client library
for ROS, which this project uses as an interface between our domain-specific language and ROS.

PROTOTYPING MOVEMENT DESIGN IN EMBODIED IMPROVISATION
Improv is a tool for prototyping robot motion. Put another way, it is a tool for improvising movement
on robot platforms. The authors have taken inspiration from their experiences with embodied impro-
visation, and the creative movement design it enables. Movement experts have analyzed strategies for
improvisation for choreography and performance [10]. Improvisation helps the movement designer
understand and explore the plethora of movement options that are available at any given time. This
is especially useful in robotics applications as the field starts to explore stylized movement and the
incorporation of robotic technology into homes and art installations.

However, the time taken to set up environments and write, compile and execute code often negates
the benefits of improvisational practice when done on a robotic platform instead of a human body.
These barriers especially affect those users who do not have a strong background in programming.
This places some design constraints on the Improv system - namely, the system must have

• a minimal “representational distance" between the user’s mental model of the movement and
its description in code, so there is minimal frustration and time wasted in translation,
• a near-imperceptible delay between writing instructions to the robot and seeing the effect of
those instructions, and



Improv : Live Coding for Robot Motion Design MOCO, June 28–30, 2018, Genoa, Italy

• a singular environment where the user interacts with the program (to avoid the user’s attentional
flow being broken by needing to switch between different interaction modalities).

IMPROV FEATURESThe authors were influenced by several of the
principles outlined in the ‘cognitive dimensions
of notations’ [11]. There are eleven ‘cognitive di-
mensions,’ or design principles, that the authors
describe but several are especially relevant to
this work, such as

• Closeness of mapping: "Ideally, the prob-
lem entities in the user’s task domain
could be mapped directly onto task-
specific program entities, and operations
on those problem entities would likewise
be mapped directly onto program oper-
ations" [11]
• Diffuseness: How many symbols or
graphic entities are required to express
a meaning?
• Error-proneness: Does the design of the
notation induce ‘careless mistakes’?
• Hard mental operations: Are there places
where the user needs to resort to fingers
or pencilled annotation to keep track of
what’s happening?
• Progressive evaluation: Can a partially-
complete program be executed to obtain
feedback on ‘How am I doing’?

To specifically address these design criteria, we have included the following features in Improv. These
features are intended to give the user a sense of flow : a mental state of complete absorption in the
activity. The fewer distractions in the activity, whether it is improvisational dance or coding, the
higher the chance of the participant becoming completely engaged and accessing all the available
creative options.

• small representational distance between movement and code: a domain-specific language, inspired
by choreographic techniques such as spatial symmetries, relative timing changes, and body-
centric coordinates. The systems and terminology developed by choreographers and other
movement experts are invaluable in this attempt, such as in [14] [8] [2] and [13].
• rapid movement prototyping: changes to the user’s file are interpreted by a Haskell program
that builds a ROS node for publishing messages to a simulator or physical robot. This process is
nearly real time, allowing for a seamless user experience.
• workspace with few attentional switches: a live coding interface with only two windows at most,
one for editing the text file and one for observing effects on a simulated robot.

Domain Specific Language (DSL) Features. The base type of the Improv language is a movement.
Movements can be combined with each other in various ways, forming new movements. Table 1
shows the grammar of the Improv language. The language supports primitive robot movements such
as forward and right. Movements are organized in units of time called “beats.” The base timing of
beats (units per minute) can be specified by the user. Movements can be composed and stored in
variables. The following table shows some example programs in Improv.

Natural Language Code Comments
move forward for one beat,
turn right for one beat,
move forward for one beat

forward right forward performed in three beats

move forward, right, and
forward, all in one beat

[forward right forward] performed in one beat - same spa-
tial extent, but faster

curve right and forward forward || right
reverse the movement "for-
ward right left"

reverse (forward right
left)

same as left right forward - re-
verses the order of the primitives

retrograde the movement
"forward right left"

retrograde (forward
right left)

same as right left backward -
reverses entire trajectory



Improv : Live Coding for Robot Motion Design MOCO, June 28–30, 2018, Genoa, Italy

CONCLUSIONS AND FUTUREWORKprim→ rest
| forward
| left
| halfleft
| right
| halfright

movement→ prim
| movement movement
| [movement]
| (movement)
| movement | | movement
| transformer movement

transformer→ reverse
| retrograde
| repeat n
| reflect ax

exp→ rs $ movement
| var = movement

Table 1: The grammar of Improv pro-
grams. exp represents top-level ex-
pressions, which execute movements
on robot(s), or store movements in
variables. Movements are converted
into ROS message streams and can
be composed and grouped inmultiple
ways.

Future work must include systematic studies of the usability of the system, as compared to other
tools such as Scratch and Python or C++ ROS clients. From our own explorations of the tool, we
have found that the experience is quite engaging, especially when using a three-dimensional physical
simulator. We have included a video as supplemental information of Improv being used with Gazebo.

One major limitation of Improv is that the language does not allow the user to incorporate sensor
feedback. An interesting future extension of this work would be to interface the Improv DSL with
ROS subscribers and include the ability to react to sensor readings and environment state. Another
limitation of Improv is the complexity of incorporating new robot platforms. Currently it is only
possible to control simple, Roomba-like robots by setting linear and rotational velocities. Extending
Improv to more articulated robots requires defining the conversion from Improv programs to ROS
messages in Haskell, and may be especially tedious for robots with many body parts and degrees
of freedom. Future work will involve using ongoing work in the RAD Lab on compactly describing
patterns of robot body organization to make this extension process more accessible.

Finally, we would like to emphasize that the design decisions for how Improv programs are realized
on robot platforms are relatively arbitrary and a single robot could have a multitude of different
implementations. As Thecla Schiphorst has written, “it is not technological constraints that hold us
back from using technology in new ways; technology changes at a tremendous rate. Our willingness
to explore beyond the constraints of our imagination has the greatest effect” [22]. We hope that the
implementation described here opens up new avenues of imagination for how robot programming
can become more easily integrated into different forms of human movement expression.

ACKNOWLEDGEMENTS
This work is partially funded by NSF grant #1328018 and DARPA grant #D16AP00001.

REFERENCES
[1] Sorin Adam and Ulrik Pagh Schultz. 2014. Towards Interactive, Incremental Programming of ROS Nodes. arXiv (2014).

http://arxiv.org/abs/1412.4714
[2] Sarah Fdili Alaoui, Kristin Carlson, and Thecla Schiphorst. 2014. Choreography as mediated through compositional

tools for movement: Constructing a historical perspective. In Proc. of the 2014 International Workshop on Movement and
Computing. ACM, 1.

[3] Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber. 2014. Collaboration and learning through live coding
(Dagstuhl Seminar 13382). Dagstuhl Reports 3, 9 (2014), 130–168. https://doi.org/10.4230/DagRep.3.9.130

[4] Miguel Campusano and Johan Fabry. 2017. Live robot programming: The language, its implementation, and robot API
independence. Science of Computer Programming 133 (2017), 1–19.

[5] Nick Collins and Alex McLean. 2014. Algorave: Live performance of algorithmic electronic dance music. In Proc. of the
International Conference on New Interfaces for Musical Expression. 355–358.

http://arxiv.org/abs/1412.4714
https://doi.org/10.4230/DagRep.3.9.130


Improv : Live Coding for Robot Motion Design MOCO, June 28–30, 2018, Genoa, Italy

[6] Anthony Cowley and Camillo J Taylor. 2011. Stream-oriented robotics programming: The design of roshask. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 1048–1054.

[7] Christopher Crick, Graylin Jay, Sarah Osentoski, Benjamin Pitzer, and Odest Chadwicke Jenkins. 2017. Rosbridge: Ros for
non-ros users. In Robotics Research. Springer, 493–504.

[8] Shannon Cuykendall, Thecla Schiphorst, and Jim Bizzocchi. 2014. Designing interaction categories for kinesthetic empathy:
A case study of synchronous objects. In Proc. of the 2014 International Workshop on Movement and Computing. ACM, 13.

[9] Pablo Estefó, Miguel Campusano, Luc Fabresse, Johan Fabry, Jannik Laval, and Noury Bouraqad. 2014. Towards live
programming in ROS with PhaROS and LRP. arXiv preprint arXiv:1412.4629 (2014).

[10] William Forsythe. 2004. Improvisation technologies: a tool for the analytical dance eye. Hatje Cantz.
[11] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual programming environments: a ’cognitive

dimensions’ framework. Journal of Visual Languages & Computing 7, 2 (1996), 131–174.
[12] Liwen Huang and Paul Hudak. 2003. Dance: A Declarative Language for the Control of Humanoid Robots. Technical Report

YALEU/DCS/RR-1253. Yale University.
[13] Doris Humphrey. 1959. The art of making dances. Grove Press.
[14] Amy LaViers, Catie Cuan, Madison Heimerdinger, Umer Huzaifa, Catherine Maguire, Reika McNish, Alexandra Nilles,

Ishaan Pakrasi, Karen Bradley, Kim Brooks Mata, et al. 2017. Choreographic and Somatic Approaches for the Development
of Expressive Robotic Systems. arXiv preprint arXiv:1712.08195 (2017).

[15] Maja J Mataric. 2004. Robotics education for all ages. In Proc. AAAI Spring Symposium on Accessible, Hands-on AI and
Robotics Education.

[16] Alex McLean, Dave Griffiths, Nick Collins, and Geraint A Wiggins. 2010. Visualisation of live code.. In EVA.
[17] Alex McLean and Geraint Wiggins. 2010. Tidal–pattern language for the live coding of music. In Proc. of the 7th sound and

music computing conference.
[18] Arne Nordmann, Nico Hochgeschwender, Dennis Leroy Wigand, and Sebastian Wrede. 2016. A Survey on Domain-Specific

Modeling and Languages in Robotics. Journal of Software Engineering in Robotics (JOSER) 7, 1 (2016), 75–99.
[19] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New York, NY, USA.
[20] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. 2009.

ROS: an open-source Robot Operating System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.
[21] Gregory F Rossano, Carlos Martinez, Mikael Hedelind, Steve Murphy, and Thomas A Fuhlbrigge. 2013. Easy robot

programming concepts: An industrial perspective. In IEEE Conf. on Automation Science and Engineering.
[22] Thecla Schiphorst. 1986. A Case Study of Merce Cunningham’s Use of the Lifeforms Computer Choreographic System in the

Making of Trackers. Master’s thesis. Simon Fraser University.
[23] Huang Yi and Joshua Roman. 2017. Huang Yi & KUKA: A human-robot dance duet. (April 2017).

Figure 2: An example of a text-editor
and simulation environment configura-
tion available to users of Improv. Any text
editor can be used, while simulators or
robots must be compatible with the ROS
message types implemented with the sys-
tem.


	Abstract
	Introduction
	Live coding and algorave

	Prototyping Movement Design in Embodied Improvisation
	Improv Features
	Conclusions and Future Work
	Acknowledgements
	References

